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FOREWORD

Since the 1960s, a precise azimuth reference (PAR) has been maintained at Holloman Air Force Base,
New Mexico. Currently, this azimuth reference is maintained by the Defense Mapping Agency
(DMA) at an accuracy approaching 0.1 arcsec. In the early 1980s a requirement was established to
significantly improve this reference to support accuracies approaching 0.01 arcsec. Current Global
Positioning System (GPS) kinematic relative positioning surveys reach subcentimeter accuracies over
baselines varying from hundreds of meters to hundreds of kilometers. At 100 km, a 5-mm
perpendicular error is equivalent to 0.01 arcsec.

Astronomic measurements with the new Geodetic Astrolabe, along with radiometry to measure and
correct for relative tropospheric refraction, suggest that accuracies to better than 0.1 arcsec are
possible. Together, these Astronomic techniques coupled with GPS indicate that a GPS/stellar
reference of 0.05 arcsec is within reason.

The current 0.1 arcsec reference is optically determined. To use it with GPS determined azimuths,
the two results need to be placed in a common coordinate system. GPS results are found in the
World Geodetic System 1984 (WGS 84); consequently, azimuths determined this way are geodetic
azimuths. Stellar observations give azimuths in astronomic coordinates. The relationships between
these two systems can be found if the difference between the local gravity vector and the normal to
the ellipsoid are known. Alternately, a reference surface whose position and orientation are known
in both systems would suffice. The accuracy with which the GPS can determine the orientation of a
plane in space is investigated. This work was funded by DMA under the direction of Mr. Ben Roth
and Mr. Dennis Bredthauer and was performed in the Space and Geodesy Branch, Space and Surface
Systems Division, Strategic and Space Systems Department.

The authors would like to thank Mr. Roth and Mr. Bredthauer for their support of this project. The
authors would also like to thank Dr. Alan G. Evans for his helpful comments.

This report has been reviewed by Dr. Jeffrey N. Blanton, Head, Space and Geodesy Branch and
Mr. James L. Sloop, Head, Space and Surface Systems Division.

Approved by:

D.B. COLBY, riaﬁ/

Strategic and Space Systems Department
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1.0 INTRODUCTION

A precise azimuth reference (PAR) at Holloman Air Force Base, New Mexico, is maintained by the
Defense Mapping Agency (DMA) at an accuracy approaching 0.1 arc second. Currently at
Holloman, azimuth observations of the star Polaris with an autocollimating theodolite are used to
derive the reference. Theodolite observations determine astronomic azimuth while many field
applications require geodetic azimuth. The transformation between the laboratory's astronomic
azimuth and geodetic azimuth used in the field is the main topic of this report. A brief discussion of
possible techniques to improve the accuracy of the PAR is presented in Appendix A.

The autocollimating theodolite points through a laboratory window. Using the window's position
in both the astronomic and geodetic reference frames, a transformation between the two frames can
be generated. Assuming the window's astronomic position is known, finding its geodetic position
becomes the primary problem. High precision World Geodetic System 1984 (WGS 84) positions
can be determined using Global Positioning System (GPS) measurements. Unfortunately, the
window is inaccessible and cannot be instrumented with GPS antennas. The desire to exploit GPS
accuracy has led to the suggestion that the GPS signal reflections (multipath) from the window be
used to define its position (Reference 1). Ina general way, employing the signal multipath is similar
to kinematic GPS relative positioning.

Kinematic GPS relative positioning involves determining the position of a moving receiver with
respect to a fixed one (Reference 2). Both carrier phases and pseudoranges are collected from a
minimum of four satellites. It has been demonstrated that the baseline vector between the fixed and
remote sites can be determined to the millimeter level (References 3 and 4). One advantage of
kinematic over static relative positioning is that a baseline vector is determined at every observation
time. This is an important property because, although the laboratory window is stationary, the
reflection point will move with time because of changing geometry. The moving reflection point is
analogous to a moving receiver. Kinematic positioning therefore allows any motion around the
nominal reflection point to be observed. This can be useful as a diagnostic because the incident
signals come from different directions and their reflection points will be different unless the physical
size of the reflective area is small.

Assumptions will be made in the development of the astronomic to geodetic transformation.
Foremost, it has not been demonstrated in the laboratory that tracking a multipath signal is possible,
although theoretically the concept has been introduced (Reference 5). Aside from the difficulties of
gaining lock for a multipath signal, it is assumed that the window can be represented mathematically
as a plane.

1-1
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2.0 REFERENCE FRAMES

The Earth's form is often approximated by an ellipsoid whose shorter axis is the axis of revolution.
Small deviations between the actual form of the Earth and the ellipsoid of revolution are the source
of the differences between the astronomic and geodetic reference frames. Astronomic coordinates
are based on astronomic observations made with level instruments. Because they are directly based
on observations, they are also called natural coordinates. Geodetic coordinates are based on the
ellipsoid of revolution. Both astronomic and geodetic coordinates (latitude and longitude) are
referred to the Conventional Terrestrial System (CTS). The CTS has its origin at the center of the
Earth; the X-axis is towards the mean astronomic Greenwich meridian; the Z-axis is towards the
Conventional Terrestrial Pole; the Y-axis is perpendicular to both and forms a right-handed
coordinate system.

Leveling an astronomic instrument makes its vertical parallel the direction of the gravity vector at
the station. The direction of the gravity vector is sometimes called the plumb line. Astronomic
latitude (Figure 2-1) 1is the angle measured in the astronomic meridian plane between the
instrument's plumb line and the equatorial plane. It is positive from the equator northward, and
negative to the south. The equatorial plane is defined perpendicular to the Earth's rotation axis.
Instantaneous and mean astronomic latitudes are defined by using, respectively, the instantaneous
and mean equatorial planes. Astronomic longitude is the equatorial angle from the prime meridian
to the astronomic meridian plane containing the parallel to the rotation axis and the plumb line. It
is positive to the east. An instantaneous or mean rotation axis is used to define, respectively, an
instantaneous or mean astronomic longitude. The instantaneous rotation axis is located with respect
to the mean rotation axis (the Z-axis of the CTS) by the elements of polar motion. Astronomic
height is the orthometric height of the station. Orthometric height is measured along the curved
plumb line from the geoid.

Z
A
(Vg

arallel to level surfaces
-axis

plumb line

prime meridian

plane —

astronomic meridian
plane ¢

equatorial plane

FIGURE 2-1. ASTRONOMIC LATITUDE ($) AND LONGITUDE
(A) OF STATION P
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Geodetic latitude (Figure 2-2) is the angle measured in the meridian plane between the ellipsoid's
equatorial plane and the line that is normal to the ellipsoid and also passes through the station. It is
positive northward and negative southward. Geodetic longitude is the angle measured in the
equatorial plane between the prime meridian and the meridian passing through the station. It is
positive to the east. Geodetic height is the straight line distance from the ellipsoid measured along

the ellipsoidal normal.

equatorial
plane

FIGURE 2-2. GEODETIC LATITUDE (¢) AND LONGITUDE (1)
OF STATION P

The conversion of astronomic latitude and longitude to their geodetic counterparts involves the
deflection of the vertical (Reference 6). Equation (2-1) shows the relationship between astronomic
and geodetic latitude, and Equation (2-2) shows the relationship for astronomic and geodetic

longitude.

¢= @& ~ & 1)

A=A-n sec(d) (2-2)

where ¢ is the geodetic latitude
® is astronomic latitude
€ is the north-south component of deflection of the vertical
A is geodetic longitude
A is astronomic longitude
n is the east-west component of deflection of the vertical
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The astronomic latitude and longitude and the components of the deflection of the vertical given in
these equations are referenced to the station location and not the geoid. Equation (2-3) gives an
approximate relationship between geodetic height and astronomic height. Figure (2-3) is a sketch
showing the geometric relationships of these quantities.

h= H+N (2-3)

where h is the geodetic height
H is the astronomic height
N is the geoidal undulation

Using this approximation should result in geodetic and astronomic coordinates consistent to within
less than 0.01 arcsec.

/ _—_\ gmpoid

FIGURE 2-3. GEODETIC HEIGHT (h), ASTRONOMIC HEIGHT
(H), GEOIDAL UNDULATION (N), AND TOTAL DEFLECTION
OF THE VERTICAL (&) OF STATION P

The WGS 84 consists of an ellipsoid definition, a reference frame, and gravity field and geoid models
(References 7,8, and 9). The definition of the WGS 84 ellipsoid has recently been reviewed. Among
the four defining WGS 84 parameters, only the geocentric gravitational constant, GM, was altered.
The International Earth Rotation Service (IERS) GM value was adopted for high-accuracy
Department of Defense applications such as precise orbit determination (Reference 10). The WGS
84 reference frame (i.e., a set of station coordinates) was refined using GPS data from worldwide
networks of tracking stations (Reference 11). The refined WGS 84 reference frame and the IERS
Terrestrial Reference Frame 1991 (ITRF91) are estimated to be coincident to within 10 cm
(Reference 11). Currently a joint project involving DMA and the National Aeronautics and Space
Administration is underway to improve the WGS 84 gravity field and geoid models.

2-3
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3.0 PROPOSED TECHNIQUE

The fundamental problem is to determine the WGS 84 position of a plane target by using GPS signal
reflections. Figure 3-1 shows a schematic of the problem's geometry. Pseudorange and phase data
are collected at the absolute reference antenna (labeled A in the figure). At this antenna multipath
is a noise source to be eliminated. The directional antenna (labeled B) points to the plane target
(labeled T). The directional antenna collects both pseudorange and phase data reflected from the
target. The vector v,g connecting the two antennas transfers the absolute position to the directional
antenna. This vector might be surveyed independently or simultaneously depending on the properties
of the directional antenna. The vector vy from the directional antenna to the nominal reflection point
on the static target is constant. At any time the actual reflection point depends on the relative
position of the satellites and the target. The satellite-target geometry changes because of satellite
motion and Earth rotation over the span of observation. The reflection points should describe a
continuous path around the nominal target. Kinematic relative positioning solutions can be made to
follow the path of the reflections. To initiate the solution, an On-The-Fly (OTF) ambiguity resolution
technique is necessary in order to resolve the integer cycle ambiguities.

GFS Satellites

Ql;solutc Known
erence w Baseline
Antenna A — Directional
/ *\ B-— Antenna
(Array)

FIGURE 3-1. SATELLITE SIGNALS ARE REFLECTED FROM
TARGET AT T TO RECEIVING
ANTENNA ATB

3-1
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. Using the positions of three or more reflection points, the orientation of the WGS 84 best-fitting
plane can be determined. The transformation between the geodetic and astronomic frames can be
determined using the orientation of the plane in the two frames.

3-2



NSWCDD/TR-95/206

4.0 OBSERVATION EQUATIONS

A review of the GPS observation equations is presented to investigate what modes of operation may
be best suited for PAR applications. Kinematic relative positioning using phase observations are the
most precise and are recommended. Dual frequency solutions to remove the ionospheric effects are
not needed over short baselines. Since the ionospheric correction adds noise to the observation, single
frequency solutions are probably the best choice. Double differencing between the receivers and the
satellites removes both satellite and local clock offsets. Single differences between satellites produce
lower noise observations, but long-term drift due to receiver clock or equivalent sources are judged
to be a serious problem. Therefore double differenced solutions are recommended.

4.1 GPS OBSERVATION MODEL

Obtaining the best results over baselines of 1 km and longer kinematic relative positioning requires
the use of both pseudorange and phase observations at L, and L, frequencies. Single frequency
observations can be used when the separation distances are small and the differential range bias from
the ionosphere can be neglected. A model that describes the pseudorange observation was presented
by Braasch (Reference 12). The notation will be modified for the purposes here, but the general form
will be retained. For each parameter, a dependance upon satellite will be expressed as a superscript
j or k, and a dependance upon receiver (and antenna) will be expressed by a subscript m or n. The
transmission frequency is denoted by the subscript f, which may be either a 1 or a 2, and the time of
the observation is denoted by the subscript i. Absence of a dependance is represented by a dot.
Figure 4-1 shows some vectors used in the observation equations derived below.

Braasch's observation equation includes the following terms: the true geometric range r/_ ; between
receiver antenna i and satellite j, the receiver time offset 7, ; , the satellite time offset 7/,
propagation effects due to the troposphere T/, ; and the ionosphere I/, ; = (4% /c) K, ;, the User
Range Error URE, multipath error d,,,, receiver satellite channel delay d,,,, receiver measurement bias
erTors dy,, Teceiver noise, and the deliberately introduced effects of Selective Availability SA/ .. In
the following development, the User Range Error, multipath error, receiver channel delay, bias errors,
and noise will be omitted, but a term to account for relativistic effects y /., will be added. The
ionospheric constant K /_; is related to the columnar electron content along the line of sight

(Reference 13). The pseudorange observation p /,;; for satellite j, receiver m, frequency I, and
observation i, with meters as units, is written in Equation (4-1).

, Az .
P{m = rn{.l + Y:u te(r,, - T{i) + T»{_, + _—{Kn{i + SAJi (4-1)
c

4-1
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satellite j

mi

sitem site n

md

0

FIGURE 4-1. SOME VECTORS USED IN OBSERVATION
EQUATIONS

A similar expression can be used for the phase observation if an integer cycle ambiguity term N J 1o
is added. It represents the number of full cycle counts recorded by the receiver on a particular channel
and is arbitrary. Since the integer cycle ambiguity is part of the phase observation, it will be included
on the left-hand side in Equation (4-2). When N/, is correctly known, the sum of the phase ¢/,
(cycles) plus the integer N/, (cycles) represents the observed range R j_.(meters) divided by the
wavelength (meters). The sum has units of cycles. The wavelength 4, is needed in Equation (4-2) to
change these cycles back to meters. Note that the ionospheric refraction in Equation (4-2) has the
opposite sign that it had in Equation (4-1) (Reference 14).
2

M@yt N =l vyl v e, - P AT, - =Kty (4D
C

The geometric range r/,; is the magnitude of the vector to the satellite, in the WGS 84 coordinate
system, minus the vector to the receiver antenna, as shown in Equation (4-3). The satellite
coordinates as a function of time are available from the satellite ephemerides, while the receiver
antenna coordinates are to be found. With relative positioning between multiple sites, it is assumed
that at least one of those sites is known or can be found in an absolute sense in the WGS 84 reference
frame. The kinematic relative positioning technique locates one site with respect to another precisely,
even when all sites are in motion with respect to the earth, but is not intended for the absolute

determination of position.

rh = '{i LT (x‘: -x, )%t (yi “Yui)V T (zji -2,.)% (4-3)

4-2
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4.2 SMOOTHING PSEUDORANGE WITH PHASE

As shown in Equation (4-2), the phase observations have an unknown range bias N/,,, that is site-,
satellite-, and frequency-dependent. Therefore the phase observations cannot be used to obtain a
navigation solution in the same manner as the pseudoranges, because there is an added unknown
range bias introduced by each satellite. This is unfortunate because the noise associated with a single
frequency pseudorange observation is about an order of magnitude greater than the noise on the
equivalent phase observation. Multipath is also less pronounced with phase (References 15 and 16).
For these reasons, when pseudoranges are needed but an instantaneous real time navigation solution
is not the primary objective, it is advantageous to use the phases to smooth the pseudoranges.

4.2.1 Single Frequency Observations

In order to smooth the pseudoranges, continuous uninterrupted phase observations from all satellites
are required over the entire period of interest. The idea is to reduce the random error on the initial
pseudorange observation by averaging. In effect, the pseudoranges at any time #; become the sum
of the initial averaged pseudorange plus the difference between the phase observation at ¢ and the
initial phase at #,. The ionospheric effect remains and is expressed by the terms containing X, in
the equations that follow.

By differencing between Equations (4-1) and (4-2) all the terms on the right-hand side are removed
except for the ionospheric component. This result for # is shown in Equation (4-4).

2

A
iy )'1(¢:n + N::.) = Z_C:I'K:.x (4-4)

p mli

By differencing in time two equations like (4-4), the unknown integer N/ , can be removed.
Equation (4-5) shows the difference between observations at ¢, and #,.

2

A
p:ll - p:m = A'1(4)|:n,ll - ¢:10) + 271(K:1 - K:a) (4'5)

Equation (4-5) can be rearranged so that all the terms relating to #; are on the left-hand side. They
are expressed in terms of the pseudorange and the ionospheric term at each succeeding time, plus

the phase differences as shown in Equation (4-6).
J lj J J Aj J J J
PnlO - 2 -C_Ku.d = pnll - Z—K-.l - A'1(¢ull - ¢m10) (4-6)
c

The average pseudorange, denoted by the overbar in Equation (4-7), is evaluated at 7, by summing
Equation (4-6) over all x observation times.
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The average pseudorange, denoted by the overbar in Equation (4-7), is evaluated at ¢, by summing
Equation (4-6) over all x observation times.

lf 1 x Af ; P .
P - 2 ’C_Kn{a = Y P - 2 _C—Km.i - A, (b - b)) 4-7)
x + 1 i=0

Now the pseudorange at each time ¢ can be reconstructed by rearranging Equation (4-6) and inserting
the average value for the pseudorange at ¢, from Equation (4-7). The result, Equation (4-8), is the
smoothed pseudorange observation equation for L,. If L, observations are available, the same
procedure can be applied to them. In cases where two-frequency data is available, it may be useful
to remove the ionospheric term. The procedure for removing the ionospheric effect is discussed in

section 4.2.3.

2 2

. A . A, . .
P~ 2 Ky = Pio - 2 Koo ¥ A (- o) (+8)
c

4.2.2 Time Differences

Single frequency time differences can be used to remove the differential ionospheric effects that
accummulate over time. A second benefit of time differences is that it provides a way to detect cycle
slips. A cycle slip is a phenomenon that occurs when the receiver mistracks the satellite signal without
losing lock and adds or subtracts multiple integers (or half integers, depending upon the receiver
design) to the phase observation. Since each integer cycle slip adds or subtracts a wavelength of range
between the receiver antenna and the satellite, it can lead to an erroneous position solution.

Time differences can be computed to perform the tasks outlined above. The pseudorange time
difference, derived from Equation (4-1), is shown in Equation (4-9) and the phase time difference,
derived from Equation (4-2), is shown in Equation (4-10). Assuming that there are no cycle slips
between epochs £, and ¢, the integer cycle term N/, subtracts out in Equation (4-10).

2

. Y ) .
P]m.n - Plnuo - "C—(Kn]u - K»]uo) +

. . , 4-9
(Fh - rl) (Yl i) * et - ) - e (T ) + (4-9)

(T), - T) + (s47 - s4%)

4-4
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A .
by = Bro ) = - —(Kpy - Kjp) +

A i ) . 4-10
(radi = 1) ¥ (Yo - Yho) e (ty - T,,) - (/- ) + (4-10)

(Tai - Top) + (847 -S4

Since only single frequency observations are being considered, the two frequency method described
in section 4.2.3 cannot be used to eliminate the ionospheric term K/ ,; from the observations. When
Equation (4-10) is subtracted from (4-9), all the terms on the right-hand side of the equal sign are
removed except for the ionospheric terms. The resulting estimate of the ionospheric range difference
in the interval (¢; -#,) is shown in Equation (4-11) and can be substituted into either (4-9) or (4-10)
to remove the differential ionospheric term. Since pseudoranges are included in (4-11), this scheme

will add noise to the phase observations in (4-10).

A : . . .
(K - Ko) = 1~ P ~ 3, @ - ¥ ] (4-11)

Cycle slips can be identified by comparing the differentially corrected versions of (4-9) and (4-10).
With the ionospheric term removed, the remainder of the right hand side of the two equations are the
same. Therefore the left-hand sides must measure the same range difference. If the difference between
the phase equation and the pseudorange equation departs from zero after a period of time, a cycle slip
might have occurred in the phase.

4.2.3 Dual Frequency Observations

The ionospheric term can be computed from (4-10) if two-frequency phase data are available. Once
the ionospheric effect is removed, the pseudoranges can be smoothed by the phases to reduce the
random noise in the same way as was done previously for the single frequency case. First, form the
differences as in Equation (4-10) for both L, and L,. Then difference the two time differences. All the
terms on the right in (4-10) are independent of frequency except the ionospheric term. The result of
the difference is written as Equation (4-12).

2 2

A, - A
Ay - W) - A - Wla) = ( - l)(K..{.- - Kly) (4-12)

4

Each of the ionospheric terms is modeled by a frequency-independent parameter K/ ., which is
proportional to the ionospheric electron content along the line of sight, between each receiver antenna
and each satellite. A solution for the constants is possible in terms of the phase observations and their
respective wavelengths, as shown in Equation (4-13).
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J J
Kj ) Kj - ¢ A'1(4’{-.11 - 4’{-10) - "':(4’;21 - 4’;-20) (4_13)

m.i .0 2 2

PR Y

2

If Equation (4-13) is multiplied by 2(4%, /c) and added to both sides of (4-10), a time-differenced
observation, Equation (4-14), is created that has the same right-hand side as the pseudorange time
difference Equation (4-9). Equation (4-14) has the same functional properties as the pseudorange
but with the low-noise properties of phase (Reference 14).

Wy e | i 80 - RO W) |
1 mlt ~ mi0 1 -

Ay A

3
2

A (4-14)
(KL Ky v (ol e (vl - i) ¢
[+

ey, - Tu) - €(F, - W)+ (TJ,- T.,) + (A, - SAY)

.t

Since the right-hand side of Equation (4-14) is the same as the right-hand side of (4-9), the left-hand
sides of those two equations must be equal. Exploiting this, the pseudorange at # can be rewritten
in terms of the two-frequency phase observations and the pseudorange at #,, as in Equation (4-15).
A similar expression can be written for L, if desired.

A, - 6L - A, - L)
me = pj-m + l;(d’{-u - ¢1—10 ) + 21: L= - A ®

(4-15)
AL - AS

Equation (4-15) can be rearranged to find an average value for p7 10 as was done for the single
frequency case. This average can then be substituted into Equation (4-15), and the smoothed,
ionospherically corrected pseudoranges computed from the phases. Equation (4-16) is used to
compute this average pseudorange at f,. All of the smoothing performed in this section can be
performed with data from a single receiver. In the next section, multiple receivers and satellites are

considered.

J

Pmio =
: A By - Ose) - AW - Fl) || (@16
1 E Piu ) 11(4)1“ ) d’{.m ) - 2)‘§ 1\ Pasi 102 ; 2 20 ( )
x + 1 .., A, - A,
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4.3 SINGLE DIFFERENCE BETWEEN RECEIVERS

If two sites collect pseudorange and phase data from the same set of satellites simultaneously, the
observations can be differenced to remove some effects that are common to both. When performing
these differences, the absolute motion of the sites with respect to the satellites, or the relative motion
between the two sites (if any) is not important. What is important is that the velocity and acceleration
of the receiver antennas with respect to the satellites be such that the GPS receivers retain continuous
track of the signals and do not introduce time tag errors (due to tracking loop delays) when reporting -
the observations. Also, the receiver's clocks should not be widely divergent in either time or frequency
offsets (Reference 17).

When pseudorange observation equations in the form of Equation (4-1) are differenced between
receivers m and n, Equation (4-17) results. Because the satellite-dependent time offset 7/ ; and
Selective Availability SA’ ; are common to both observations, they are effectively removed by the
difference.
AZ
. PR Y .
Pt = Post = _C_(Kn]u -kt (4-17)

(rl-ri) + (YL -yl + e(ny, - t,) + (T, -T))

Equation (4-18) shows the result of differencing the phase observations, taken from Equation (4-2),

between the two receivers m and n. As in the pseudorange, the satellite-dependent terms drop out.
12

Ay - Gy * Ny - M) = - (K] - KLY +

1 mli nli ml. nl. ¢ 2 i (4-18)

(rd - vl + (YL - Yl *e(ny, - v,) + (T, -T))

4.4 DOUBLE DIFFERENCE BETWEEN RECEIVERS AND SATELLITES

Equations (4-17) and (4-18) can be formed for each of the satellites that are common between the
observation sites. A second difference can be computed between satellites; this produces a double
difference in which the site-specific terms, such as local clock biases, are removed. What remains is
relativity, propagation effects due to the ionosphere and troposphere, the geometric range, and in the
case of the phase observation, the unknown integer phase counts. Equation (4-19) is the double
differenced form of the pseudorange observations, and Equation (4-20) is the double differenced form
of the phase observation.
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(p{.m - p{m) - (P:_u - p:]i) =
A .
S &L - KD - ®E-KD [ Ol - )+ (419)

3 k 3 k
(Yo - ¥l) - (v - vo) + (T - T - (T, - T,)

- 8t ML - WD) - @ Bt WD) -

i _
- T’[(K,.{: - Kl) - (K, - K,:)] A N LA (4-20)

k

(Y){u‘ - Yr{.l) - (Y:u' - Y:i) + (Tn{i - Tn{i) - (Tnfi - Tn.l‘)

Note that for short baselines where the paths to the satellite from both receivers are approximately
the same, the ionospheric terms in Equations (4-19) and (4-20) contribute little to the observed range
and can be ignored. For longer baselines the ionospheric terms may need to be considered. As was
done previously in Equation (4-12), the two-frequency observations can be differenced to eliminate
all but the ionospheric contribution. This is shown for the phase in Equation (4-21).

] - W+ N N - W dhy N A
x,[wi,,- Wt N, - NL) - (G- bt N - N )] = (4-21)

2 2
(xz-x,

){(K,:‘_,. D SARNC D 49

It can be seen that Equation (4-21) may be solved for the K's and then substituted back into
Equation (4-20). The K's are written explicitly in terms of the phase observations and integer

ambiguities in Equation (4-22).
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(&l - kD - (k- kD] =

N [ Frss - G+ N - N - by - buy + Ny - N, >] i
' A oAl (422

(W~ o+ WL N - @ 8y NS - 0D))
PR

cd,

When Equation (4-22) is substituted into Equation (4-20), the ionospheric effect is removed and the
ranges plus the effects of relativity and tropospheric refraction are expressed in terms of the two-
frequency phase observations and the integers. The ionospherically corrected double differenced
observation equation is given in Equation (4-23).

Al [ . .

S Wy W WL - D) - @ 8 N - N

A'2'-1'1. )

A2 [ X , . 4-23
e AR A R A S R S R
2 - 1

' k k ] j k k ' j E k
("n{x - 7)) - (P - Paid T (Yo - You) - (Y - Y.) t (Th - T - (T,; - T,1)

A comparison of Equation (4-23) with Equation (4-20) illustrates the advantage of using single

frequency observations when possible. The noise in the L, observations expressed in the first line of
2

Equation (4-23) are multiplied by a factor , which is 2.55 compared to unity for the same

Ay - A

observations in Equation (4-20). In addition, the L, observations, which do not appear in

2
1

2 2
Ay - 4
lowest double differenced noise over short baselines, where the differential ionospheric effects

between sites can be neglected, single frequency observations should be used. A discussion of the
ionospheric tradeoffs is given by Clynch and Coco (Reference 18).

Equation (4-20), are multiplied by a factor of , or 1.55 times the wavelength. Therefore for

For the particular case where the best relative positioning noise performance is desired over short
static baselines, the single difference alternative should be considered. Equation (4-18) shows that
the observation noise should be about 0.7 of the doubly differenced case because only one satellite
is considered per observation, rather than two. Besides the ionospheric and tropospheric refraction
and relativity effects, there remains the difference between the local frequency standards. If the two
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receivers are locked to a single high-performance frequency standard and temperature effects are
controlled, this difference could be kept small enough to ignore. However, Gourevitch (Reference 19)
cautions that the Ashtech Z-12 receiver is optimized for double differencing and that differential phase
drifts between receivers can and do occur. This is probably true of any manufacturers. These drifts
look like clock drifts and will appear when other modes of processing that do not eliminate the local
clock are used. Therefore it seems prudent to employ double differencing kinematic techniques to
avoid common mode problems due to receiver hardware environmental dependencies.

4.5 SOLUTION PROCEDURE

For the purposes of this discussion of kinematic relative positioning, assume that two frequency
pseudorange and phase data are available from two sites and four or more satellites over a period of
time. The time interval between observations should be as short as possible consistent with the
correlation time between solutions due to receiver bandwidth and the dynamics of the sites, if any.
In general, no constraints need be placed upon the motion of either site; both may be moving with
respect to the WGS 84 geodetic coordinate system, though that will not be desirable for PAR. It has
been demonstrated that the kinematic relative positioning procedure allows precise relative positions
to be reliably computed between two (or more) sites over distances up to about 30 km.

4.5.1 The Reference Site

To begin, one needs to know the location of the reference site. The reference may be assigned to any
site, but it is usually the one that is centrally located and well defined. It can be at rest or in motion,
but if there is a site at rest, it should be selected as the reference. When possible, it should occupy a
preexisting bench mark and thus tie the positions of the other sites to an absolute reference. If in
motion, then the other sites will be positioned with respect to it and provide three-dimensional
information about the relative vectors joining them as a function of time. Whether the reference is in
motion or not, an estimate of its absolute position is required so that the partial derivatives can be
computed. If a priori information is not available, the conventional navigation solution computed with
pseudoranges should be adequate in most cases. Pseudoranges smoothed with phases should be used

to minimize the observation noise.

In order to smooth the pseudoranges, Equation (4-8) can be used. The pseudoranges from all
succeeding times ; are shifted by the phase observations to #, and averaged over the k observation
epochs. The navigation solution at ¢, can then be computed with the averaged pseudoranges. If two-
frequency pseudoranges are available, another equation like Equation (4-8) can be written for L,, and
the two used together to compute the ionospheric correction. Alternatively, the equations developed
in section 4.2.3 can be used. Then the solution for the position and local time offset of the reference
site can be computed if four or more satellite observations are available. '

4-10




'NSWCDD/TR-95/206

4.5.2 Secondary Sites

With the reference position known at each time epoch to within the errors allowed by the navigation
solution or site survey, an estimate of the other site's position with respect to the reference is needed.
If the position of the site is known at #,, no initial estimate of the position is needed. Otherwise, a
navigation solution similar to the one described for the reference site can be computed for the initial
position.

With the baselines approximately known, a procedure to establish the unknown integer cycle
ambiguities can then be employed to precisely define the baseline vectors at each time epoch. The
reference site, if in motion, is not a factor in the accuracy with which the relative solutions may be
obtained.

4.6 OTF INITIALIZATION

The reference site is either at a fixed position, or its position as function of time must be found from
a navigation solution using the smoothed pseudoranges obtained from Equation (4-16). The integer
cycle ambiguities can be established without requiring that both sites be stationary for a period of time
(Reference 20). Assume that an OTF integer ambiguity resolution technique has provided an estimate
of the position of the secondary site with respect to the reference at each observation epoch. Once
found, these integers can be used to continue to compute the kinematic relative position of all sites
relative to the reference. Equation (4-20) and its equivalent for L, may be used, or alternatively, the
two-frequency observation Equation (4-23) for sites that are separated by several kilometers may be
used.
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5.0 OBSERVATION EQUATIONS FOR PAR

For the PAR application, a plane is defined in space by computing the vector from a given reference
antenna to three or more points that lie in a plane. If just three points are used, the plane is defined
by those points. If more than three points are used, then the plane must be some best fit to all points
as described later in this report. Figure 5-1 illustrates the case where the plane target is defined by
three patch antennas. The antenna at point A is the absolute reference. It operates in the ordinary
sense by collecting pseudorange and phase data via the direct signal from the satellites. The antennas
at T, T,, and T; also receive the direct signals from the satellites. The baselines from point A to each
of the target points T,, T,, and T, are found from kinematic relative positioning. However, in this
application the target is inaccessible and cannot be instrumented with patch antennas.

GPS Satellites

T

Antennas
on Target
Absolute
Reference
Antenna

TH |

FIGURE 5-1. BASELINE VECTORS FROM A TO TARGET
DETERMINE PLANE T,, T,, T,

In Figure 5-2 the situation is modified by the addition of a directional antenna array represented by
the antenna at point B. In this case there are no antennas at the target; rather, the signals are assumed
to be reflected from the target and received at B. The direct signals from the satellites to B must be
attenuated so that they do not swamp the desired indirect signals from T. For this reason, no direct
rays are shown to reach the antenna at B. The reference antenna at A continues to operate as before.
Now the kinematic relative positioning is between antennas A and B, where B receives the indirect
signals from the target. The distance between the antenna at B and any point on the target is constant
and the kinematic relative positioning is between antennas A and B, where B receives the indirect
signals from the target. The distance between the antenna at B and any point on the target is constant
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and satellite-independent. This extra propagation distance acts just like an antenna cable delay or local
clock offset. The effect is the same as if the antenna at B were physically located at a point on the
target. Therefore the data analysis proceeds just as it would in the situation illustrated in Figure 5-1.

GPS Satellites

Absolute " Known

Reference - Baseline
Antenna A ~ ] Directional
1 )E\ B— Antenna
(Array)

FIGURE 5-2. BASELINE VECTORS FROM A TO B DETERMINE
TARGET PLANE

This can be demonstrated from the pseudorange observation equation. The pseudorange, or phase
observation, is written in terms of the magnitude of the vector difference between the satellite position
j and the site location m (the range), plus other terms, as in Equation (5-1).

2

) . A .
p‘:di = ’nju + 'fui te(r,, - Tji) + T»Ju + _IKn]u + SAji (5-1)
c

The vector from the site m to the satellite j can be expressed in terms of the vector to the satellite
minus the vector to the site, as in Equation (5-2).

= . (5-2)

i
P"u- - r;- I'"u.

In the indirect case, the site subscript m represents the incidence of the indirect signals at T. No
direct signals from the satellites are received at B, only the indirect signals. Therefore the geometric
range is the sum of the range from satellite j to the target T and from 7 to antenna B, as written in

Equation (5-3). The paired vertical bars indicate magnitude of.
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(5-3)

N J
indirect range = r., + r_ = . N

This expression takes the place of 7. ,in Equation (5-1). Since the second term in Equation (5-3)
is independent of satellite j, and the points representing the target and antenna B are fixed points,
the range is constant and can be lumped with the ¢ 7,,; term that is also satellite-independent.
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6.0 PAR TRANSFORMATION SOLUTION

Using the GPS techniques outlined above, the positions of points on the laboratory window at
Holloman can be determined in the WGS 84. The window is assumed to be a flat surface and is
modeled as a plane. When a sufficient number of GPS observations are available, a least squares
solution for the plane's orientation is made. Given the astronomic coordinates of the plane and the
WGS 84 orientation, a transformation that relates the astronomic and geodetic frames is found.

6.1 EQUATION OF A PLANE IN THE WGS 84

The most direct method of defining the general equation of a plane uses three noncollinear points.
Three such points in the WGS 84 are defined as Q with Cartesian coordinates at X Yo Zp Ratx,
Ye» Z,and S at x;, y,, z. The vector N is defined normal to the WGS 84 plane on which Q, R and
S exist. The point P represents any point on that plane. By definition, the dot product of the vector

from Q to P and vector N is zero:

(QP)-N = 0

Defining the vector N as the cross product of two vectors in the WGS 84 plane:

N = OR x OS

then the dot product in Equation (6-1) becomes:

(QP) - (QR x Q0S) = 0

After expanding Equation (6-3), the closed form expression of a WGS 84 plane is:
@ -x)[0,-9) @ -2)-0,-¥) G, -z
* -y I, -x) @ -2) - &, - x) @ - 2)]

t@E-2) I -x)0,-p) - -x) 0, -y)1=0

(6-1)

(6-2)

(6-3)

(6-4)
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6.2 DETERMINATION OF A PLANE IN SPACE

As described above, three points define a plane, but in the case of the PAR, there will be multiple
determinations of points that must lie on one plane. These points may be referenced to a single
external reference point R as illustrated in Figure 6-1. The vectors V. represent individual
determinations of a vector to each of several points that must lie on the plane. A least squares solution
can perform the desired synthesis and combine all the point solutions into an estimate of the plane that
best fits all observations.

Reference
Foint

FIGURE 6-1. DIAGRAM OF VECTORS FROM REFERENCE POINT
TO EACH POINT ON PLANE

In the figure, the patches on the plane represent either antennas or reflective areas that define the
plane. The reference point is used as an absolute WGS 84 reference and also as a reference for the
vectors to each patch, such as Vy,. If the patches are reflective areas, an auxiliary antenna array (not
shown) is needed to select and receive reflections from each area (see Figure 5-2).

The general equation for a plane given in Equation (6-4) is rewritten in Equation (6-5). The
coefficients ¢, ¢, ¢, are to be estimated from observations of the x,, y,, z, coordinates referred to

point R.

Ex,t ey, Tz, T é, =0 (6-5)
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The least squares formulation proceeds as follows. First, write Equation (6-5) with ¢, on the right to
acknowledge that each k point will be offset slightly from the true plane. Then square both sides. The
result is Equation (6-6).

— )2
(¢x, * éy,t éz, % ¢ = & (6-6)

Notice that both sides of (6-6) can be multiplied by éo'z thereby eliminating that constant. The new
coefficients are written without the accent mark in Equation (6-7). In this new form, sum
Equation (6-6) over all k and set it equal to E.

E=Y =Y (e,x* ey, T ez t 1) (6-7)

k=1 k=1

Then find the partial derivative of E with respect to each of the three coefficients ¢

s> Cy» Cyr These
are listed as Equations (6-8).

oE _ ~ 2

Pl 2Y (e,x + e,y %, t cz,x, *t x,)
x E=1

0E _ . « 2

e 2 (exyy, v oy Yoy, tyy) (6-8)
y k=1

oE ~ 2

- =2Y (¢,xz + e,y 2, t ez, +z,)
’ k=1

In order to find the minimum of E with respect to the coefficients, each of these equations is set equal
to zero. Then the right most term is shifted to the right-hand side. The result is shown in
Equations (6-9).

n n
2 _

Y (ex toyxtezx)=-Y x
E=1 E=1

E (e,xy, t e ylz toe,5,y,) E Ve (6-9)
E=1 k=1

n 2 n

y (e, 2, t e yz, tezp) = - Y z,
k=1 k=1

These are the normal equations that must be solved for the three coefficients. In matrix form, this can
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be rewritten as follows: Define an A matrix that contains the coordinates x;, y,, z, for each
observation.

A=]%r5% (6-10)

Define an X vector that will contain the least squares solution for the coefficients.

X= [cx c, cz]T (6-11)

Finally, to form equations like (6-5), the right hand side must be a column vector of -1's. This is
written as Equation (6-12).

0=[1- -1 .. 1| (6-12)

Multiplying these together gives Equations (6-13), or in matrix form, Equation (6-14).

c x *t ¥ toez = -1
cx, t ey, tez =-1
cx, t €,¥; tez, = -1 (6-13)
c.x, t ey, tecz = -1
AX =0 . (6-14)
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Next, premultiply both sides of (6-14) by 4 T and then premultiply both sides of that result by
(A TA)™. This gives the least squares solution for X that is equivalent to solving the system of
equations (6-9). :

X=(AT4)7 470 - (6-15)

Whether the A matrix is filled with every single relative kinematic solution vector or whether it just
consists of the average vectors to each antenna or patch on the plane is a matter for further
discussion. If all solutions are placed in the A matrix, it could be a very large matrix having thousands
of rows. With just the averages, then the matrix will have as many rows as there are antennas on the
plane.

Once the coefficients are found, then the orientation of the plane in WGS 84 space is known. The
errors in the determination can be estimated from the covariance and the adjusted residuals. The
coefficients are the direction numbers of a line perpendicular to the plane with the origin at the
reference point. To fix the plane in absolute space, the coordinates of a point on the plane need to be
found. The absolute position of the reference point Vj plus the mean vector from the reference to a
particular point on the plane Vg, can be used to establish the absolute geodetic position of the plane.
Let the position vector to a particular point & be as in Equation (6-16).

V,= (Vg t Vm)£+(mG+ VPt (Vo t V)i (6-16)
This point must lie on the plane, so Equation (6-17) must hold. Since ¢, ¢,, ¢, are known from
Equation (6-15), this provides a means to compute c,, which fixes the plane in space relative to the
origin.

¢ (Vi T Vig) Fe,(Vg, + Vo) +e, (Vg + V) +c, = 0 (6-17)

The equation for this particular plane is represented by Equation (6-18).

c.x t c,y teztc =0 (6.18)
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6.3 AN ASTRONOMIC-GEODETIC TRAN SFORMATION

The geodetic unit vector normal to the plane represented by Equation (6-18) has components given
in Equation (6-19) and the perpendicular distance from the origin to the plane is given in
Equation (6-20).

PO cx 2 4+ cy s 4 C: n
nG ) 2 2 2 i 2 2 2 ’ 2 2 2 ’ (6-19)
\’c,+cy+c, \Jc,'l'cy‘f'c, Neo te toe
c
d= 2
(6-20)
\J c: + c: + cf
On the plane, the vector joining points 1 and 2 is given by Equation (6-21).
Vear = (Vg - Ve )E+ (Vgy = Vo )V + (Vg - Vi) (6-21)
The corresponding unit vector is given in Equation (6-22).
" (Vm-Vm)x“'i'(VW-Vm])ﬁ“F(Vm-Vm)f
- (6-22)

GI12
\](Vm -Vt (Vs - V,m)2 + (V- V)

A second vector in the plane can be obtained by the cross product shown in Equation (6-23).

>

V. =V_ x4 (6-23)

Gx G112 G

Together, these three unit vectors form a basis for the geodetic coordinate system. A similar basis in
the astronomic coordinate system is required to define the transformation matrix 7, between the two
systems. When the same three unit vectors are known in both coordinate systems, a general vector
V,; defined in the geodetic system is known in the astronomic system as V,. This is shown in

Equation (6-24).
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(6-24)

In order to compute the required transformation, put the three vectors that sample the space together
as columns of a matrix. The same vectors need to be expressed in both coordinate systems. The basic
form of the equation is the same as for a vector, as is shown in Equation (6-25). Then postmultiply
both sides of Equation (6-25) by M, to solve for the transformation. This is written in detail in
Equation (6-26) (Reference 21).

M, =T, .M, (6-25)
.o N .o . |1
Bae Vaaz Vx| [Pax Veoaz Ve
- 1 _ n S A - - )
T(=M, M; = ﬁAy VAyIZ x| P VGyIZ = (6-26)
Ry Vi Vs Ao Ve Ve
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7.0 EXAMPLE OF TRANSFORMATION TECHNIQUE

Data obtained during the Turntable Test (Reference 22) performed at the Naval Surface Warfare
Center, Dahlgren Division (NSWCDD) during February 1994 can be used to demonstrate the
determination of a plane using the method outlined in section 6.0. Four receivers collected two-
frequency GPS data simultaneously with Trimble 4000 SSE receivers. During the period of time used
here, all sites were static. Figure 7-1 illustrates the approximate relative locations of the four sites.
Station 6 at Dahlgren, Virginia was selected for the reference site. The other three sites, MBRE,
ASTW, and Station P, define a plane whose normal can be found. The ASTW site is about 33 km
southwest of the reference site at Corbin, Virginia. The triangle formed by these three points is long
and narrow. OTF kinematic positioning can provide vectors between the reference and the other three
sites. These three vectors define the plane at each observation time. All the individual solutions can
be averaged together or the solutions can be processed in a filter to form one final result. Either way
should be equivalent, any differences being dependent upon the weighting given to each time point.

As shown in Figure 7-1, the distances between the reference and Station P is about 1.2 m, between
the reference and MBRE, 1.2 km; and between the reference and ASTW, about 33 km. The variation
in the components and the length with respect to the mean values are shown for each baseline in
Figures 7-2 through 7-4. As expected, the variations are greatest for the longest baseline
(Figure 7-4), most likely because of the greater differences in propagation effects between the distant
sites. The other two baselines (Figures 7-2 and 7-3) give similar errors, with the variations probably
the result of the local multipath effects. The means and the standard deviations about the means as
determined from the reference point are listed in Table 7-1. The unit vectors of the means listed in
Table 7-1 are shown in Table 7-2. The distance from the reference point along a line perpendicular
to the plane is 0.021 m.

12m

l

12
Station 6 km MBRE
% Statlon P
rom -y

ASTW ®

FIGURE 7-1. PLAN DIAGRAM OF FOUR SITES USED
FOR TURNTABLE TEST
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KINEMATIC SOLUTION RESIDUALS: STATION 6 TO STATION P

0.015 - g " - 0.015
0.010 0.010
0.005 E 0.005
—~ A
E 0.000 % 0.000
N z
-0.005 & -0.005 . :
0.010 0010 }- e ' ............. ............. ‘ ............. .....
0.015 - - - - -0.015 - ' :
158000 158500 159000 159500 158000 158500 158000 159500
GPS TIME OF WEEK (s} GPS TIME OF WEEK (s}
0.015 0.015

158000 158500 159000 158500 158000 158500 159000 158500
GPS TIME OF WEEK (s) GPS TIME OF WEEK (s)

FIGURE 7-2. VARIATIONS IN EACH COMPONENT FROM MEAN SOLUTION FOR REFERENCE SITE TO
STATION P

TABLE 7-1. MEAN (1)) AND STANDARD DEVIATION (¢) OF SITES WITH RESPECT TO REFERENCE

X (m) Y(m) Z(m)
n o n 0 N Y
Station 6 to P 1.1814 | 0.0023 -0.0007 } 0.0047 -0.3666 | 0.0023
Station 6 to MBRE 1126.7854 | 0.0024 -42.8533 | 0.0040 -369.7550 | 0.0023
Station 6 to ASTW -26553.4141 | 0.0041 | -15170.5703 | 0.0195 | -11198.9746 | 0.0140
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KINEMATIC SOLUTION RESIDUALS: STATION 6 TO MBRE
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FIGURE 7-3. VARIATIONS OF COMPONENTS FROM MEAN FOR REFERENCE TO MBRE

TABLE 7-2. UNIT VECTORS FOR THREE MEANS LISTED IN

TABLE 7-1
Reference X Y Z
to...
Station P 0.9551 -0.0006 -0.2963
MBRE 0.9495 -0.0361 -0.3116
ASTW -0.8153 -0.4658 -0.3439
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KINEMATIC SOLUTION RESIDUALS: STATION 6 TO ASTW
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FIGURE 7-4. VARIATIONS OF COMPONENTS FROM MEAN FOR REFERENCE TO ASTW

The mean values define the plane with respect to the reference point. The plane with respect to the
WGS 84 origin can be found from Equation (6-16) by adding the absolute position of the reference.
The result is listed in Table 7-3. The normal vector to the plane can be computed by Equation (6-19)
and the distance from the origin by Equation (6-20). The normal expressed with respect to the
reference point and the WGS 84 origin is listed in Table 7-4. The matrices M; and M, expressed by
Equation (6-25) can be computed as outlined in Equations (6-19), (6-22), and (6-23). The result for
M, is listed in Table 7-5. Then if the same normal vector M, is known in the astronomic coordinate
system, the transformation between them 7, can be found by Equation (6-26).

7-4
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TABLE 7-3. MEAN VECTORS WITH RESPECT TO WGS 84 ORIGIN

X (m) Y (m) Z (m)
Station P 1123603.9094 -4882075.6937 3934314.9574
MBRE 1124729.5134 -4882118.5463 3933945.5690
ASTW 1097049.3146 -4897246.2667 3923116.3495

TABLE 7-4. UNIT VECTOR NORMAL TO PLANE DEFINED BY STATION 6, MBRE, AND ASTW

Unit Vector Perpendicular Distance (m)
X Y Z Reference Origin
0.174685 -0.764139 0.620948 0.021 6369867.214

TABLE 7-5. MATRIX M; DEFINING GEODETIC SPACE

X Y Z
0.174685 0.949524 0.260556
-0.764139 -0.036149 0.644038
0.620948 -0.311604 -0.719254

The variation of the baseline components in time, shown in Figures 7-2 through 7-4, results in a
variation in the definition of the plane and its normal about the mean value. This can be expressed
as an angular movement of the normal vector in each of the three components. The standard
deviation of the normal is listed in Table 7-6 for the components and the root-sum-of-squares (RSS).
The time variation is plotted in Figure 7-5. It is immediately clear that the variation is not entirely
noise, but contains a slowly varying time-dependent offset. This residual is probably due to
propagation effects including multipath as mentioned previously. It would be desirable to test
this hypothesis by checking the repeatability of the vector motion from day to day. If repeatability
can be demonstrated, then averaging across days at specific times having the same satellite geometry
may offer a more precise way to establish the normal vector than averaging within a day.
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TABLE 7-6. MEAN () AND STANDARD DEVIATIONS (¢) OF
EACH COMPONENT OF NORMAL VECTOR

Units = X Y Z RSS
arcsec
n 0 0 0 1.190
o 0.845 0.650 1.034 0.888

VARIATION OF THE NORMAL VECTOR FROM THE MEAN
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FIGURE 7-5. VARIATION OF COMPONENTS OF NORMAL VECTOR
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8.0 POSSIBLE PAR IMPLEMENTATION

The determination of a plane in space assumes that the plane is directly defined at three or more
points by GPS antennas or indirectly defined by reflections off the plane at three or more points that
are received at an auxiliary antenna array. The observation equations were described in section 5.0.
Successful reception of indirect signals is dependent upon several factors, including the effective
target cross-section, the distance from the target to the receiving antenna, the gain of the receiving
antenna, and the ratio of the strength of the direct signal to the indirect signal at the receiver.

Once signals are received, the PAR application requires that repeatability and accuracy be maintained
at an extremely high level. Small uncorrected biases will invalidate the results. In order to achieve the
required performance, there are two requirements that must be met simultaneously. The indirect
signals must be detectable and usable at the sensor, and the sensor biases must be predictable and
correctable.

8.1 RADAR RANGE EQUATION

The effective GPS C/A signal power at the surface of the earth is P;ps= ~163 dBw (Reference 23).
After reflection from a surface and propagation to a receiving antenna, the power available would
likely be smaller unless the reflecting surface has strong focusing properties. The effect of reflection
can be modeled by the radar range equation. The form of this equation will be developed and
discussed with respect to the PAR application.

Two important relationships between wavelength A, antenna physical area A, antenna gain G,, and
beam solid angle £2, need to be introduced first. The first relationship relates wavelength to area and
solid angle, and the second relationship defines gain as inversely proportional to solid angle. These
are shown in Equations (8-1) and (8-2).

A=A Q, (8-1)
4T

G = — -
o, (8-2)

As shown in Equation (8-2), since the solid angle £2, cannot exceed 47, the gain cannot be less than
unity. If the two equations are merged by elimination of the solid angle, the result is Equation (8-3).

8-1
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G
A= 2 — (8-3)
4= .

The first step toward the radar equation is the Friis transmission formula (Reference 24). At a
distance r; from the transmitter, the power received is equal to the product of the power density P,
and the area of the receiving antenna, as expressed in Equation (8-4).

P, = P4 (8-4)

The power density is defined by the power per unit area impinging on the inside surface of a sphere
of radius ;. If the transmitting antenna gain, Gy, is unity, then the power density is the same
everywhere on the surface of the sphere. If G is a function of direction, then the maximum power
density is where G is maximum. The power density is given by Equation (8-5).
G P
3 I T
Py = (8-5)

2
4nr,

Since it is better to write the radar equation in terms of wavelength rather than area, the 4 in (8-4)
can be removed by substituting Equation (8-3). The result is Equation (8-6).

A G
P =P =

R R
4x

(8-6)

If Equation (8-5) is substituted into Equation (8-6) the result is the Friis transmission formula,
Equation (8-7). In the general case where the gains are functions of direction, the power received
is also a function of direction.

A
dn "1 }2 Gn GrPr (8’7)

This equation states that the power received at a receiver is proportional to the power transmitted
times the transmitter antenna gain times the receiver antenna gain and is inversely proportional to
the square of the separation distance. This equation assumes free space propagation and that the
antenna gains are maximum, that is, they both favor the direction along the line joining the

transmitter to the receiver. Written in logarithmic form as decibels, where dB = 10 log,, —};5, the
1

formula in Equation (8-7) becomes a sum in Equation (8-8).
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P, =20[log & - log (47) - log r,] + 10[log G, + log G, + log P;] dBw  (8-8)

In the case of GPS, the part pertaining to the transmitter can be lumped together into the Pgpg
referenced above. That is, the first three terms on the right and the terms involving G and P; can be
combined. The simplified equation is shown as Equation (8-9). This confirms what is already well
known, that the only way for a user to increase the signal at the receiver is to add gain at the receiving
antenna.

P, = Py t+ 10 log G, dBw (8-9)

R

To continue development of the radar range equation, Equation (8-5) is rewritten to represent the
power density incident on a reflecting surface at a distance 7, from the transmitter. This is shown in
Equation (8-10).

. G
5 = GiPr

RI

(8-10)

2
inr,

At the reflecting surface, some of this incident energy, o ﬁm, is reradiated in a direction toward a
receiving antenna at a distance r,. The symbol o represents the radar cross section of the reflecting
surface and has units of m?. Therefore the power density received at the antenna a distance 7, from
the reflector is represented by Equation (8-11).

> _ RI
PRZ = . (8-11)
41tr2

Finally, (8-10) can be substituted into (8-11) and the result multiplied by the receiver antenna area
Ap,, as expressed by Equation (8-3), to change from power density to power. The result of these
substitutions is a form of the radar range equation (Reference 25) shown as Equation (8-12).
o A’G,G
P, = —-——72—"2 P, (8-12)
(4n )3r1 r,

The reflected power received at point 2 is directly proportional to the power transmitted, the radar
cross section, the wavelength squared, and the product of the antenna gains at the transmitter and
receiver. The received power is inversely proportional to the product of the squares of the distances
from transmitter to reflector and from reflector to the receiving antenna. This equation can also be
written in decibels in the same manner as Equation (8-8), as shown in Equation (8-13).
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P, = 20(logx - log(4x) - logr - logr,) +

(8-13)
10 (lqgo - log(4n) + logG,, + logG, + logP, ) dBw

As before, the terms dealing with the transmitter can be lumped together and replaced by Pgpg. The
resulting simplified form is displayed as Equation (8-14).

P,=P_. -20logr, + 10[logG,, + logo - log(4n)] dBw (8-14)

R2

The parameters remaining that can be adjusted include the distance between the reflector and the
receiving antenna, the receiving antenna gain, and the radar cross section of the reflector. In order
to use kinematic relative positioning to determine the orientation of the target plane, the receiver
must be able to track the satellites with the indirect signals in much the same manner as it does with
direct signals. This requires that the losses in Equation (8-14) due to reflection, reradiation, and
reception at a point r, meters distant be made up by the antenna gain and the radar cross section.
The constant 4n contributes - 11 dB, while the other parameters can be chosen as part of the design.

As an example, suppose that the range r, is 10 m (-20 dB), the antenna gain is 20 dB, and the radar
cross section is selected as 10 m? (10 dB). Figure 8-1 shows that the power received indirectly
amounts to only a 1-dB reduction in signal strength compared to the direct signals. It is clear from
this choice of parameters, however, that the radar cross section cannot equal the physical cross
section. The physical cross section of the entire window will be smaller than 1 m?, and the points
used to determine the plane may be on the order of 1 cm?. In order to achieve the large radar cross
section, it will be necessary to enhance the reflective areas by some method in order to increase its
apparent size. This may require a physical modification or addition to the window's surface. To
achieve the high antenna gain, an elaborate receiving antenna array is required. The combination of
the 20-dB gain antenna and the enhanced radar cross section will likely increase the system
sensitivity to antenna phase center errors (Reference 26). A phase center correction table could be
developed and used to correct the observed ranges for phase center variations as a function of
satellite direction. Empirical verification of this technique will be needed to establish that the
required millimeter accuracy can be achieved. Development of the antenna and the cross section
enhancement will be easier to accomplish at a single frequency. Therefore only L, operation is
recommended.

8.2 ADAPTIVE PHASED ARRAY ANTENNA

For signal strength purposes, it is important to have a high gain antenna. High gain implies
directionality, which would be necessary in any event to help reduce the direct signal strength. A
fixed array would not be suitable for the PAR application because the direction to the satellites
constantly changes. A phased array (Reference 27) would be better suited because the direction of
the nulls could be managed to follow the satellites across the sky, thus reducing the direct signals
by an amount equal to the null depth. An array of » antennas can produce n-/ nulls.

8-4
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If the best four satellites were constantly tracked, an array with a minimum of five antenna elements
is required for PAR. Since the pseudorange code provides discrimination between satellites, the direct
signals from the satellites not being tracked will not interfere and do not have to be nulled.
Simultaneous reception from the several enhanced areas on the target plane would require multiple
phased arrays. Otherwise, with only one phased array antenna, the enhanced areas could be targeted
in a predetermined sequence over a period of time.

Signal Level at Earth's Surface = -163 dBw

|

4n -1dB

!
Radar Cross
Section +10 dB
I

Path Loss
-20 dB

}

Antenna Gain
+20 dB
¥

Direct Signal

Indirect Signal

-163 dBw -164 dBw

FIGURE 8-1. SIGNAL GAINS AND LOSSES BY
INDIRECT PATH COMPARED TO DIRECT PATH

A computerized controller for the phased array would need to be developed. It would select the
satellites to be observed, or alternately poll the receiver for satellites to be nulled. A single frequency
geodetic quality receiver could be used without modification if it supported the relevant input and
output data. The controller allows flexibility since it would be directed by software. It could also be
used to receive data from the direct signal reference antenna and could do the kinematic relative

position solutions in near real time. .

8.3 MULTISTATIC RADAR

A receiver could be specifically designed to detect the indirect signal by taking advantage of the fact
that it always arrives later than the direct signal. If the GPS satellites are considered as wideband
noise sources, then the application becomes very much like a multistatic radar system, but one where
the transmitter is not under direct control of the user. With a receiver capable of cross correlating the
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direct and indirect signals, an observation of the relative time delay is obtained. Since the motion of
the satellites is well known, and with the target and the receiving antenna stationary, the satellite
motion can be computed and compensated. Then long integration times over several seconds become
possible, and the requirements for a high gain receiving antenna and the enhanced radar cross section
at the target are lessened. However, a phased array capable of deep nulls will likely be required to
help keep the direct signal out of the indirect signal channel in any case.

A multistatic radar system can collect three classes of observations: time delay, Doppler frequency,
and angular space coordinates. The time delay is due to the different path lengths taken by the direct
and indirect signals. The Doppler frequency is proportional to the velocity of the satellite, the target,
or the receiver projected on the line of sight joining them. The angular space coordinates depends
upon the directional characteristics of the antenna array. The time delay would be the primary
observation of interest in this case since the target and receiver are stationary and the motion of the
satellite is already known, as noted above. There is an interesting possibility that the Doppler could
be used as a means of identifying the target signal.

If a small facetted rotating cylinder were constructed that could be attached to the target, its rotation
would impress itself as a periodic Doppler shift onto the indirect signal. Since the period of rotation
would be known, the corresponding Doppler frequency could be searched for that signal. The
frequency offset would be nonzero, and therefore most of the zero Doppler clutter reflections would
be removed by Doppler frequency filtering. Multiple targets could be simultaneously accommodated
if the frequencies were different. This could provide a significant increase in signal-to-noise and make
the individual target signals unambiguous.
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9.0 CONCLUSIONS

A technique to generate a transformation between the astronomic and geodetic reference frames has
been described. The technique is based on knowing the orientation of a plane in both frames. There
are advantages to this technique over the conventional method, which requires measurements of the
deflection of the vertical. Employing an astrolabe to measure the deflection of the vertical insures
high accuracy transformations, but obtaining precise measurements is time-consuming. Additionally,
the measurements must be made in situ, which may be impractical. The proposed technique may
potentially overcome both of these difficulties. Defining an astronomic-geodetic transformation for
a laboratory window at Holloman Air Force Base was the specific problem addressed in this report.
The astronomic orientation of the window was assumed known. The window's geodetic orientation
may be determined using GPS kinematic relative positioning.

GPS kinematic relative positioning using phase observations offers millimeter accuracy. Over short
baselines, ionospheric effects are mostly removed by differencing. Double differencing between the
receivers and the satellites removes the clock effects of both, and is considered the best mode of
processing. Single frequency solutions are most desirable because of the their low-noise
characteristics. The proposed method for positioning the window at Holloman AFB employs GPS
multipath signals. Using the indirect signal introduces an effect similar to a local clock offset and so
does not complicate the data analysis procedure.

Using data from a static relative positioning test, the level of uncertainty with which a plane's
orientation can be determined using GPS data was estimated. The estimated uncertainty realized
using direct signals, about 1.0 arcsec, is too large for generating useful transformations for the PAR.
Systematic noise effects present in results may be diminished or removed by repeated observation or
other noise reducing methods thereby improving the plane's orientation uncertainty. It is anticipated
that results generated using indirect signals will contain more noise.

The power of the indirect signal from the window will be less than that of a direct signal. To
compensate, either physical modifications, or additions to the window, or high-gain antenna arrays
are required. In this case, high-gain receiving antennas are needed to reject the unwanted direct signal
and to make up some of the loss due to the indirect path. Additional augmentation of the radar cross
section at the reflecting surface is also required. With suitable attention to the gains and losses along
the indirect path, an unmodified geodetic-quality receiver could be used to collect the pseudorange
and phase observations in the same manner as for the direct signals. The antenna design is critical for
this option, and a phased array would be required to form nulls in the direction of the direct signals
from the constantly moving satellites. Simultaneous observations from several reflecting points could
be accomplished if several phased array antennas and receiver combinations were used. It would be
possible to direct the phased array at the several reflective points in sequence, but it is unlikely that
the main beam of the array would be narrow enough to effectively discriminate between them.
Therefore only one reflective surface can be made visible at a time.
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Instead of employing a geodetic GPS receiver, a wideband correlating receiver could be designed and
used with the phased array. In this case, the system becomes a multistatic radar using the GPS
satellites as sources of illumination. Since the satellite motion can be compensated, long integration
times are possible, and the antenna forward gain and target cross section requirements may be
relaxed. However, the direct signals still need to be nulled by the phased array to prevent them from
interfering with the desired indirect signals.

Physically mounting GPS antennas on the target is the cheapest option, but sub-arcsec absolute
accuracy will need to be demonstrated. The antenna phase centers need to be calibrated. The indirect
option using a geodetic GPS receiver requires the development of a phased array antenna and target
cross section enhancers. The multistatic radar option requires the phased array antenna, the target
cross section enhancers, plus the development of a wideband correlating receiver and the necessary
software for data analysis. The accuracy of this last option will probably not be as good as the first
two options because the phase observations may not be recovered. All options will require that
prototype equipment be developed and extensively tested in a controlled environment.

9-2
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10.0 RECOMMENDATIONS

Single frequency operation is recommended both for lower noise observations and for easier antenna
design. Since direct mounting of antennas on the target is not allowed, using indirect signals and a
GPS geodetic receiver is recommended. Considerable antenna development will be required. The
antenna phase center stability will be a requirement for all options. The phase centers of existing
antennas for the direct signal option and for use as elements of the phased array can be tested in
anechoic chambers and/or with real signals in an out-of-doors environment. Both types of testing may
be required to establish and understand the relevant properties.

For the recommended indirect options, a phased array design proposal can be developed with array
analysis software to determine the number of antenna elements needed and their geometrical
arrangement. The null performance and precision with which each element's phase shifter has to be
controlled are also important. The motion of the effective array phase center will need to be
established as a function of the number of nulls and their directed positions.

The development of high cross section targets that can be attached to selected points of the target
plane need development. These may consist of foil dipole strips terminated so that most incident
energy is returned to the phased array, giving them a cross section larger than their physical
dimension. The rotating cylinder suggested for the multistatic radar option will probably not be useful
with the geodetic receiver since it will just add a constant Doppler frequency offset that will be
removed in the doubly differenced observations.

Experiments with the direct signal method with multiple receivers and antennas should be pursued
to establish the best orientation accuracy that can be expected from GPS observations. Various
averaging schemes could be tested to remove noise and compensations or special bias parameters
inserted in the analysis software in an effort to solve for and remove the system biases.
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APPENDIX A

IMPROVING THE PRECISE AZIMUTH REFERENCE (PAR)
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A requirement has been established to improve the accuracy of the PAR. Currently maintained by
DMA at an accuracy approaching 0.1 arcsec, the improved accuracy will approach 0.01 arcsec.
Improving the accuracy of the PAR is a difficult task. In the main body of this report, a multipath
tracking technique is proposed to determine the orientation of a plane. Using a similar technique to
accurately determine a position on a plane may be a method to improve the PAR's accuracy. A
simplified analysis of the magnitude of the errors associated with using the indirect signal tracking
technique for PAR improvement is presented below. Further, two other ideas are presented that may
hold promise of achieving the order-of-magnitude improvement sought.

To estimate the errors associated with positioning a target using indirect signal tracking, a sensitivity
analysis was performed. The range from the antenna (B) (see Figure 5-2) to the target (T) is given
in Equation (A-1). The first term on the right-hand side approximates the indirect range from the
satellite to the antenna at B via the reflecting target. For this analysis, the range to the satellite from
the antenna at B is assumed equal to the range to the satellite from the reflecting surface. The second
term of the right-hand side represents the range derived from the direct signal received at antenna B.

pm'_,-= (’,81:1_*_ I‘BTJ)-P'BJ; (A-l)

The uncertainty in positioning the target is approximated by Equation (A-2). The first term
represents the contribution of the absolute uncertainty of satellite position, and the second term is
that of the antenna's position. The uncertainties contributed by the satellite and station clocks are
assumed negligible over the small distances that multipath tracking is possible. The contribution of
the antenna phase center bias is ignored in this equation.

d(pPg) , . d(pg)
o = D o+ 2 o
o dr’ drg, ’ (A-2)

Equation (A-2) assumes the target's position uncertainty is a function only of the uncertainty in the
satellite and antenna positions and the uncertainty in the antenna-target baseline. The uncertainty in
the antenna-target baseline is implicit in the second term of Equation (A-2). A small change in the
antenna-target baseline corresponds to a small change in the antenna's position. Equation (A-3)
shows the full expression for the partial derivative of the second term of Equation (A-2).

d(pg) _ d(pg)’ + d(pg) d(ryg)
dr dr dr dr

B. B. BT.. B..

(A-3)

Presented in Table A-1 are three cases representing varying uncertainties for satellite and receiver
antenna positions and the resulting uncertainties in the target position. The target's position
uncertainties are converted from cm to arcsec by assuming all the resulting uncertainty is
perpendicular to the direction of the baseline. The results of the first case show that under the

A-3
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system's current accuracy, the uncertainty in positioning the reflecting surface over a 25-m baseline
is about 74 arcsec. The results of the second case show the small effect the satellite position errors
have on the target's position uncertainty. When the satellite position errors decrease from 2 m to
10 cm, no significant improvement occurs in the target baseline uncertainty. The third case represents
the projected system accuracy of the near future. In the third case the uncertainty in the station
antenna's position decreases from 10 cm to 1 cm and the resulting target position uncertainty
improves by an order of magnitude. Because these estimates are for a single measurement, some
improvement can be expected with more measurements. However, increasing the number of
measurements alone will not satisfy the 0.01 arcsec PAR requirement.

TABLE A-1. POSITIONING A REFLECTING SURFACE OVER A 25 M BASELINE

Assumed Resulting
Sigmas Satellite Antenna Target Position (ogr)
Position (o;) | Position (og)
Case 1 2m 10 cm 0.9 cm (74 arcsec)
Case 2 10 cm 10 cm 0.9 cm (74 arcsec)
Case 3 10 cm 1cm 0.09 cm ( 7 arcsec)

The receiver's antenna phase center bias was omitted from the above analysis. The physical center
of a GPS antenna does not coincide with the point at which the signal is received. The reference
point for the signal measurements is the apparent electrical center of the antenna, namely the phase
center. The phase center location depends on the signal frequency, the antenna design, and the
elevation and azimuth of the satellite. This small bias cannot be ignored when sub-millimeter accuracy
is required. The antenna phase center bias contributes at least 1 mm and possible more (5 mm)
(Reference A-1) to the position uncertainty of the reflecting surface. It may be possible to eliminate
the antenna bias using a technique described by Hermann (Reference A-2).

STAR CATALOGS

The current technique of determining the PAR uses astronomic measurements of the star Polaris. The
most accurate star catalog presently available is the Fifth Fundamental Catalog (FK5 Part I). The
errors quoted in the catalog indicate the average errors should be about 0.03 arcsec. However, the
errors could be as large as 0.1 arcsec especially in the Southern Hemisphere. The U. S. Naval
Observatory (USNO) is currently compiling the Washington Fundamental Catalog (WFC), a
replacement for the FK5. Unlike FKS5, which was a refinement of its predecessor FK4, the WFC will
be a new reference frame definition. The WFC will incorporate the best of modern observational
catalogs and is expected to contain about 40,000 stars. The WFC will maintain an accuracy of
0.05 arcsec for 10 or more years. It should be available in 1997 (Reference A-3). Employing the

WEFC in PAR determination should improve its accuracy.

A4
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OPTICAL OBSERVATION OF GPS

It may be possible to use optical measurements of the GPS satellites to improve the PAR. The
position of the optical center of a GPS satellite can be determined to about 1.25 m, which
corresponds to a 0.01-arcsec line of sight accuracy (Reference A-4). This assumes the accuracy of
the GPS precise ephemeris to be around 25 cm (Reference A-5), errors in the observer's position to
be centimeter level, and errors in calculating the displacement from the satellite center of mass to
center of light to be about 1 m (Reference A-4). Improvements in the modeling of reflectance may
significantly lower the optical positioning error. To employ this technique, the GPS satellites must
be observable through the limited field of view of the laboratory window at Holloman AFB. The
altitude” of Polaris at Holloman AFB is about 32.5 deg while that of the GPS satellites is about
60 deg. GPS satellites are approximately magnitude 9 brightness and are observed optically by
employing a charge-couple device (CCD). Figure A-1 shows an example of a CCD image of
PRN 27. The 5-sec exposure taken with a 0.5-m telescope on 16 August 1993 at the Zimmerwaljyd
Observatory of the University of Bern, Switzerland (Reference A-6). Installing the necessary
equipment to obtain optical images may not be feasible in the laboratory at Holloman AFB.

FIGURE A-1. A 5-SEC CCD IMAGE OF PRN 27
TRAVERSING THE CONSTELLATION CYGNUS ON
16 AUGUST 1993 TAKEN AT THE ZIMMERWALYD

OBSERVATORY. FIELD OF VIEW IS 17'BY 17'

* Altitude is the angular distance above the horizon measured on the vertical circle through
the point.
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